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Zur Abraham-Gleichung zur Berechnung der Aktivitiiten von Salzen in konzentrierten LSsungen (Kurze 
Mitt.) 

Zusammenfassung. Es wird gezeigt, dab die yon Voigt und Abraham zur Berechnung der Aktivitiiten 
yon Salzen in konzentrierten L6sungen hergeleiteten Gleichungen/iquivalent sind und die Gibbs- 
Duhem-Beziehung erffillen. 

Introduction 

Voigt [-1] has calculated phase equilibria in salt hydrate melts using an equation for 
the salt activity derived by Gibbs-Duhem integration of the water activity equation 
obtained from the Stokes-Robinson-BETmodel. Voigt's equation for the salt activity 
appears to differ in its form from that derived by Abraham [2] and used by Ally and 
Braunstein [3] for the evaluation of excess properties and phase equilibria, and is con- 
siderably more cumbersome to apply. Voigt states that "the assumptions introduced 
with the statistical treatment by Abraham are more restrictive than the BET model." 

In this paper, we demonstrate that the equations derived by Abrahatn and 
verified by us do and in fact must satisfy the Gibbs-Duhem equation and that 
Voigt's assertion to the contrary and his statement, quoted above, is incorrect. We 
show that the equation for the solute activity derived by Abraham is identical to the 
expression obtained by Voigt through Gibbs-Duhem integration of the water activity 
equation derived from the Stokes-Robinson-BETmodel. Although the expressions 
of Abraham and of Voigt appear different, we prove that they are equivalent. We 
exemplify this point by numerically calculating the activity of CaC12 using Ab- 
raham's and Voigt's equations, and demonstrate that they yield exactly the same 
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Table 1. Identical numerical value of activities of CaC12 in aqueous solutions at CaC12 in aqueous 

solutions at 450 K fromAbraham's and Voigt's derivation of solute activities from the BETmodel 

Activity of CaC12 (as) Water Activity (aw) 

molality Abraham" (BETModel) Voigt b (BETModel) (BETModel) 
(Reference [1], Eq. 14) 

10 6.334 x 10 -4 6.333 x 10 -4 0.4231 

12 0.001810 0.001810 0.3438 

14 0.004354 0.004354 0.2800 
16 0.008974 0.008974 0.2304 

18 0.016180 0.016180 0.1924 
20 0.026120 0.026120 0.1634 

a Abraham, M., Jornal de Chimie Physique (1981), vol. 78, p. 57; b the BETparameters r and ~ used to 

calculate the solute activities in the above Table were obtained from Voigt's paper [1]; it is pointed 
out that Voigt's expression for the parameter a does not consider the data of Stokes and Robinson [8] 

values (see Table 1). Although Voigt's paper is interesting, we show convincingly that 
there is no new information contained in his expression for the salt activity, and thus 
his claim of a "restriction" in Abraham's derivation is invalid. 

Discussion 

We first outline briefly the procedure used in the statistical thermodynamic treat- 
ment of the Stokes-Robinson-BETmodel. This treatment is analogous to that for 
a lattice model in which one mixes vacant and occupied (by water) sites and free and 
bound water. This provides the combinatiorial factor or number of distributions, 
32 [2, 4, 5] 

(rs)[ h! 
"O-x! (rs -  x)! x ! (h -  x)! (1) 

in terms of the number of sorption sites provided by the salt (rs), and the number of 
free ( h -  x) and bound (x) water molecules; the energy is given by the number of 
sorbed water molecules (x) and a sorption energy (0: 

E = xe (2) 

The most probable distribution is found in the usual way [6] by applying 
Stirling's approximation and the Lagrange undetermined multipliers to Eqs. 1 and 2. 
The statistical thermodynamic definition of the entropy ~ = k In .O, where k is the 
BoItzmann constant, combined with the thermodynamic definition of the Helmholz 
energy, leads to the Gibbs free energy equation presented by Abraham. Differenti- 
ation of the free energy equation with respect to the mole numbers leads unequi- 
vocally to the chemical potentials of salt and of water, and to the activities of salt and 
of water as presented by Abraham. 
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From the form of the combinatorial factor as presented in Eq. 1 and the resulting 
free energy equation, 

/ r S - X )  H - X  G/RT~-A/RT=rSln~ ~ + H l n ~  (3) 

where G is the Gibbs free energy of adsorption, S=(s /N)  and H=(h/N) 
(N = Avogadro's number) are the numbers of moles of salt and water, respectively, 
r is the number of moles of sorption sites per mole of salt, and X = (x/N) is the 
number of moles of sorbed water (sorbed with energy e), it is evident that the free 
energy equation is a homogeneous function of first degree in the mole numbers of 
salt and water. Consequently, the chemical potentials must satisfy the Gibbs-Duhem 
Eq. [-7]. Although no further proof should be needed, we verify the Gibbs-Duhem 
consistency below. 

Differentiation of the free energy function yields the chemical potentials and 
activities: 

oS In = #=/RT= lna= - X 

+ r S - X -  ~ ri r S - X  4 H X (4) 

/ OG/RT~ It-- X 
OH ]s=#n/RT=lnan=ln(-~I ) 

The partial derivatives of X can be eliminated by making use of the relation 
which maximizes the probability of the distribution in Eq. 1 subject to the condition 
of Eq. 2 and which was used in the derivation of Eq 2. 

X 2 - e  - N e  
ln(r S _ - = _ _ .  x ) ( I - I  - x )  - k r  R T  = c (6) 

Differentiating Eq. 6 with respect to S and to H, multiplying by X and collecting 
terms yields 

rX 
+ -  + = (7a) r S - X  -~  H rS--X H-~X -~  H r S - X + H  

r S - - X  \a-/Is\  + r S - - X ~ I - I C X  =\~]=\rS----X+H X (7b) 

Hence, the bracketed terms for the chemical potentials, vanish in Eqs. 4 and 
5 yielding 

. / r S -  X~ (~S-_X~' 
lnas=rln(, t~ ); a s = \  rS ) (8a) 
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and 

lnaH= \ ~ ]; a , =  H (8b) 

The water activity is thus the fraction of unbound water, as postulated by Stokes and 
Robinson, and the salt activity is that published by Abraham and used by Ally and 
Braunstein [3] to derive the excess properties and phase equilibria. 

Verification of Gibbs-Duhem consistency follows by differentiation of Eqs. 8a and 
8b, yielding 

[01nas'~ Olna u rX (OX~ ( r S x )  H (OX~ 

(9) 
/ /  

However, it was shown above that the right hand side of Eq. 9 vanishes (Eqs. 7a and 
7b), thereby satisfying the Gibbs-Duhem relation and making the Gibbs-Duhem 
integration of Voigt redundant. 

An analogous result is found for the partial derivatives with respect to H. Hence 
also 

and 

S(01nas) H[C~lnau~ + 

Sdlna= + Hdlna H=O 

It should be understood that, regardless of other possible merits or deficiencies of 
a model, if its mathematical form provides a free energy function which is extensive 
and homogeneous in the mole numbers, its chemical potentials satisfy the Gibbs- 
Duhem relation automatically. 

Finally, we need to resolve the discrepancy between the analytical expression for 
the salt activity derived from the BETmodel and that obtained by Voigt through 
Gibbs-Duhem integration by proving that they are the same. From the BETmodel, 
a s = ( (rS-  X)/rS) r and from Voigt's integration of the Gibbs-Duhem equation, 
a s = ( ( 1 -  aH)/(C- 1)a H + 1)L We now prove that the two expressions for a= are 
indeed equivalent. 

From Eq. 6 

( r S - X ) ( H - X ) =  ee==c= r S - X  H = r S - X  / \  ~ t 7 - -  

c= r S ~ X  1 H - X  

Rearranging Eqs. 8a and 8b and combining with the above, 

c_(+ 1) 
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¢ = a - ~ - I  - -  
/ \  aH / 

1 1 -  caH 

al/r 1 - a H 
S 

1 ca n 1 - - a  H + c a  n ( c - - 1 ) a  H + I  

-s  all-~ = 1 + 1 - -  a H 1 - -  a n 1 - -  a H 

as = ( ( c  1 - - a l l  

This  is equ iva len t  to Voigt 's  Eq. 14 and  is a s imple  w a y  to ca lcula te  a s once  a n and  

c are eva lua ted .  
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